
UNCLASSIFIED Copy 1 4 of 35 copies

AD-A196 633 OT E COPT

IDA MEMORANDUM REPORT M-366

DEFENSE LOGISTICS AGENCY
DATA SYSTEM CENTER

FORMS MANAGEMENT SYSTEM (FMS)

SELECTE James Wolfe

~j\JUN 28 M8 David Carney
Audrey Hook •

D

September 1987I DISRBMON STh1E"
Approved tot public r le6iD istribu tl n U u lim t e4 ' .di; -

Prepared for
Office of the Under Secretary of Defense for Research and Engineering

INSTITUTE FOR DEFENSE ANALYSES
180I N. Beauregard Street, Alexandria, Virginia 22311

UNCLASSIFIED IDA Log No. HG 87-32728 I"..
Oro

DERiNMTONS
=D peblsbe ars ieis decume t o fepew on ecaulls of nts week.

Reput aI ite med aelherttt aid must csIVl couldered prduct IDA publishes. -

They nral"ebd recults of n=We prefact whichi (a) have a direc bearIi o dscisions
~ r4tin Eule p mgeuns, or (bi) address %asml o aficacem comsem to lie Executive

Brad, lie Cwigee aidor lie public, or (c) addrseses lid have swgnofcatnom ic
hoplicadomm. IDA Repiants ae rsvloed by etdepanela of expert to asr e ir high
quality aid relevne lite preblemstudied adflgare released by lie Prenit eto IDA.

Papers
Ppers0 omaly ad resrlaemly rstrite techical or poicy issow. They com"mae
lie res1 el special analyses, Interim rep or owr p 9ase a ask, ad hoc or qick ractiom
week. 11per are rviewed o eamure lithey med standards simler to liem expected of
rollseid papers In preIes lo mals.

Memorandum Repob
IDANMmre Report are sed lerthlec c--ednc of lie sposr or lie analysts to
record eseadv we dont In quick reatieon studies aid maWo Interactive lslcai support
coes;ee to Make aalale prelmmna ad tentave reseils if Analyses or ot working
geP aid pai d -acl t to le"wr ilmade 09i Is oasentlafy na anad sieve-
eau; ort mak a reod oftresces, meeting, or briefings, or ol data developed In
Owe came eflan Investigetiei. Reviw ot Memorandum Repots Is aled to lieu cootent
aid Inteided su.

The recalts all IDA werk are sisu conveye by betelig aid Inorlme mensorsidas to sponsor
mid e@he denated by lie speisee, whon apprpriat.IThe week reported In lis documment was condected uider comtrat MDA 903 64 C 0031 tor
One Department ofDelens. The pulication al Us1d IDA document dost not Indicate endorse-
mast by lie Deportment of Detems, nor Amioud lie contents hea ontrud as reflecting liet
olild peete of Meat ageoncy.

This Mmer@idm Report is published in order to make available Un material It contains
lot Uo was and coivelenca of Interested paties. The material has not necessarily been N
cemieely evaluated aid aalyed, nor subjeced to IDA review.j

Appreed for public releas: diatribetion unfl~mted.

P

%.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE - ,#9 / ; d, 3'3

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
Unclassified

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Public release/distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

IDA Memorandum Report M-366

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Institute for Defense Analyses IDA OUSDA, DIMO

6c ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St. 1801 N. Beauregard St.
Alexandria, VA 22311 Alexandria, VA 22311 -

Sa NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Defense Logistics Agency DLA-ZWS MDA 903 84 C 0031

8c ADDRESS (City, State, and Zip Code) 10 SOURCE OF FUNDING NUMBERS 0
Cameron Station PROGRAM PROJECT TASK WORK UNIT
Alexandria, VA 22304-6100 ELEMENT NO NO. NO. ACCESSION NO.

T-T5-423
11 TITLE (Include Security Classification)

Defense Logistics Agency Data System Center Forms Management System (FMS) (U)
12 PERSONAL AUTHOR(S)

James Wolfe, David J. Carney, Audrey A. Hook

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT .

Final FROM TO 1987 September 54 0 .

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Ada programming language; prototyping; Forms Management System (FMS);

software design; applications programming; database management system (DBMS);
automated data processing (ADP); screen design.

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

IDA Memorandum Report M-366 is a design specification for a general purpose forms management
system (FMS) to be used at the Defense Logistics Agency (DLA) Systems Automation Center (DSAC).
The design specification has been written in Ada to demonstrate the use of Ada in applications design and
to provide a modular language that can be partially implemented if desired. The functional requirements
reflect IDA's understanding of how terminal displays are used in several of the DLA systems. The Forms
Management System (FMS) is required to operate on VT-100 and IBM 3270 terminals and IBM PC-
compatible workstations.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION .N
UNCLASSIFIEP!!'NL:MIrrFw Ej SAME AS RPT. 0 DIIC USERS Unclassified S

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include area code) 22c OFFICE SYMBOL

Audrey A. Hook (703) 824-5501 IDA/CSED

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

, a;;;

1I .i•.V \ ~ ~ 'l ~ ~ ~ w.~w.~. ~ ~ j~ i - ,1 p - .- =, R . - , , '. .'x2.

UNCLASSIFIED

IDA MEMORANDUM REPORT M-366

DEFENSE LOGISTICS AGENCY
DATA SYSTEM CENTER

FORMS MANAGEMENT SYSTEM (FMS) 5

James Wolfe __

David Carney Accesici 7 ci
Audrey Hook NTS C,-&i

DTIC TA .3 oI
U n a nl l ' C P r

Dj f, ;., ' ' I U,,,

* B~y .

-. 6

September 1987 A" . .r ,.. "

II"

I|

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-T5-423 '-

(UNCLASSIFIED p...
MWA Ka

.*.WW AXYl ry I $ ~pWw
.F .

UNCLASSIFIED

TABLE OF CONTENTS
PREFACE .. xi

1.0 FUNCTIONAL REQUIREMENTS FOR FORMS MANAGEMENT SYSTEM 1

1.1 Purpose ... 1

1.2 Background .. 1
1.3 Requirements .. 2

1.3.1 igh Level Requirements .. 2

1.3.1 Log LevelRequirements.......... 3'

1.3.2.1 ADP User .. 3

1.3.2.2 Functional User .. 4

1.3.3 Technical Enviornm ent .. 4

2.0 OVERVIEW OF THE FORMS MANAGEMENT SYSTEM DESIGN AND
APPLICATION INTERFACE ... 5

2.1 Definition of Terms ... 5

2.2 Forms Management System .. 8

2.3 Conceptual Structure ... 10 3

2.3.1 Boxes ... 11

2.3.2 Screen Definition 12

2.3.3 Function Keys .. 12

2.4 Scenario for Application Program Interface .. 13

3.0 DESIGN SPECIFICATIONS .. 16

3.1 Forms Management System .. 16

3.1.1 FORMSEDITOR ... 16

3.1.2 SCREENMANAGER ... 18

V

UNCLASSIFIED

,

,m ¢td . T. g. 4, , .t, ,. , , '.-,1 --t , " - - V ,it ', , - ,. - **. , . ', . :, .k
t :

. -.. ,-h - - i,, -

UNCLASSIFIED

TABLE OF CONTENTS (Continued). .

3.1.3 SCREENITVEO.......22

3.1.4..SCREENPRIMITIVES....................................24qt

3.1.5 FORMS_LIBRARIAN .. 25

3.2 Typical Application Program Example 27

Appendix A: Allocation of Requirements .. A-1i.

,._

I

...

S t

4=4n

, ,.

UNCLASIFIE

UNCLASSIFIED

LIST OF FIGURES

Figure 1 Forms Management System Overview .. 10

Figure 2 Forms Management System Data Flow 14

Figure 3 Program Module Interaction .. 15

.' .

. !.
-

a.-

vii

UNCLASSIFIED

.~ * 'a .a. %~ P* ~ . p...* a . a~ % *. '*-, 5

UNCLASSIFIED
"'

MP.

A'

a-,

a'.

a-.
viii'

U N C L S S I F E
D'

3

UNCLASSIFIED ;

LIST OF TABLES .,

Table 1 Forms Editor Command Groups .. 8 ..

.-
%J.

I I

5, .

S~_€

;. ,-.

t;.-

. ..-

-
S..-

'. -: 'l " ' l l l l I l i l , .: i i ~ l ' i
m l l l

UNCLASSIFIED :

:I

'

J

"-

opt

UNCLASIFIED '.';

.4.-

UNCLASSIFIED

PREFACE ."*5

The purpose of IDA Memorandum Report M-366 Defense Logistics Agency Data System

Center Forms Management System, is to record substantive technical work on the
functional requirements and design specifications for a prototype Ada1 application. This
work partially fulfills requirements of IDA Task T-T5-423, Defense Logistics Information

System.

Mr. Bill Brykczynski, Dr. Joseph Linn. Ms. Katydean Price, and Dr. Robert Winner have
reviewed this paper. .

xiii

U L S I
S'

°. ".

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office ,.,,

xi -

UNC LASSIFI ED ,N

.5'
'S.

-- - - d k, -I

UNCLASSIFIED

5.

1%*

xiiF

UNCLASSIFIE

IV -1,

0

UNCLASSIFIED '>'*

1.0 FUNCTIONAL REQUIREMENTS FOR FORMS

MANAGEMENT SYSTEM

1.1 PURPOSE

This IDA Memorandum Report documents the functional requirements and design

specifications for a general purpose forms management system. The functional

requirements reflect IDA's understanding of how terminal displays are used in several of S

the Defense Logistics Information systems. The design specification has been written in

the Ada programming language to demonstrate the use of Ada in applications design and to %

provide a modular design that can be partially implemented if desired. In addition, the

design specification is intended to produce a capability that can be adapted to many

applications.

1.2 BACKGROUND

Computer programmers at the Defense Logistics Agency (DLA) Systems S

Automation Center (DSAC) must write programs to display and process the data entered on

forms. These programs are application specific, terminal and computer system specific and

are not generally adaptable to new hardware and software applications. The vendor

software available to assist application programmers in designing screens is tightly coupled 0

with the vendor's other products (e.g., teleprocessing monitor or a database management

system (DBMS)), is supplied as object code so that it cannot be modified or tailored by the

customer, and is not usable in environments that the vendor does not support with bundled
products. It is difficult or impossible to recover an investment in designed forms when S

competitive procurement results in an award to another vendor.

As part of the Ada demonstration project, there is a need to demonstrate that an Ada

tool can be used by programmers to create, modify, and maintain the forms that are used

for transactions related to the logistics business.

1

UNCLASSIFIED Q

UNCLASSIFIED

1.3 REQUIREMENTS

The majority of Logistics Information Systems are transaction driven. In the

context of these information systems, a transaction can be one of the following:

one or more pre-defined forms that are completed by a functional person that
results in another functional person taking some action, such as filling an order
and/or completing another form or set of forms;

a pre-defined form that is completed by a functional person who needs
information from a data base or from another functional person; or,

an electronic message in a standard format (e.g., MILSTRIP) that is received
by a functional person who must respond to it with a set of actions that
includes using other pre-defined forms.

Requirements for a Forms Management System have been grouped into high level
requirements and lower level requirements, both placing constraints on the design of this

system.

The high level requirements are determined by two types of users, an automated
data processing (ADP) user who designs screens and implements application programs
using them, and the functional user who uses the screens for transactions such as data
entry, data retrieval, and messages.

1.3.1 High Level Requirements .8

The Forms Management System must fulfill the following high level requirements:

* Be a set of Ada packages which are compilable into an Ada program library.

" Be usable for Ada demonstration projects and adaptable to a prototype Ada
application.

* Provide functions to create, delete, and modify menu-type screens.

" Provide functions to invoke menu-type screens from applications.

* Provide functions to create, delete, and modify form-type screens.

* Provide functions to gather data input from form-type screens and to pass this
data, through a defined interface, to application programs written in Ada or in

COBOL.

2

UNCLASSIFIED
P %"

9'

%* *,.- ",. " - .',"""-''''''" 7 .* - -- 7 L % "''; .,t; .'"' .
' . ' ' . . . ; ,

UNCLASSIFIED

Perform a limited but critical amount of input data verification. This verification
must be performed with the same rigor for all terminal types (that is, application
programs must be assured of the same verification, or lack of it, without
knowing the terminal type in use).

Be time efficient such that the functional user sees no degradation of performance
from the currently available programs.

Be designed so that all or portions of it can be developed by the programmers at
Defense Logistics Agency Systems Automation Center (DSAC) to demonstrate
their skills in software engineering and the Ada language.

Be compatible with the technical environment (e.g., terminals) already in use at
DSAC.

1.3.2 Lower Level Requirements

The Forms Management System supports a database of forms that must be:

" Indexed by application and by type.

" Linked with data validation programs (when they exist).

* Linked with appropriate run-time libraries for the terminal devices and the --.
computer systems in use.

1.3.2.1 ADP User

Screens must be designed in an interactive mode. The screen design process must 0

be menu driven. The screen designer must:

* Be provided a mechanism for specifying data types, values, and/or range of
values that can be entered on a form.

* Be able to position text, data fields, and error messages in any space
dimensions supported by the terminal device on which the screen will be used.

* Be able to design forms for fixed and variable length data fields.
* Be able to re-use portions of other screens.

A sample form (master) must be capable of being displayed at the same time that a
data entry form is being displayed. The data entered on a form must be saved as an ASCII
transaction file. Transaction files generated by data entry must be usable by COBOL

3

UNCLASSIFIED
-..A

~ % 'U !'UU.~ .:,-. :.

UNCLASSIFIED

programs. The screen designer must be able to edit forms in the database and maintain

version control. The application programmer must be able to:

* Provide default values for all user responses.

* Directly control the sequencing of screens.

* Specify menus that are inclusive or exclusive.

1.3.2.2 Functional User

A functional user must:

Be able to edit within data fields being created but unable to change the pre-
defined portions of the form. -

* Be able to control the traversal of the screen (e.g., the ability to go back to a _

previously filled entiy for correction).

Be provided menus that include prompts and help information that is pertinent
to his/her form(s) of interest.

* Be able to recall, display and/or print any single form or all forms completed
during a session.

Be warned with an audible sound or visible signal when he/she has exceeded
the space allowed for a pre-defined data field and when the transaction space
has been completed and a user action is required.

I
Keystrokes will be minimized for invoking menus or forms, for data entry, and for

editing. Uniform menus must be displayed with illogical choices precluded. The cursor
will be restricted to valid fields for data entry and menu selection.

1.3.3 Technical Enviornment

The Forms Management System must be designed to operate on VT- 100 and IBM

3270 terminals and IBM-PC compatible work stations. Dependencies on operating system

facilities will be isolated in modules that are part of the run-time library for an application
program. The Forms ManagementSystem must be capable of exploiting a color monitor.

Modifications to screen appearance should not require a change to the application program

that uses that screen.

4

UNCLASSIFIED ",

UNCLASSIFIED

2.0 OVERVIEW OF THE FORMS MANAGEMENT SYSTEM

DESIGN AND APPLICATION INTERFACE

The Forms Management System (FMS) is composed of a set of Ada programs for

the design and execution of forms in applications programs. The execution of a form may S

entail the construction of a data file containing the responses required by a form or

sequence of forms. Section 2.1 provides definitions for the terms used in this document.

2.1 DEFINITION OF TERMS

Section 2.1 defines the terms used in the remainder of this document. These terms

reflect the DLA programmer and user environment and the concepts used in the Forms

Management System.

Application: The programs and forms required to carry out some task or set of tasks.
An application program contains the executable code. The forms contain the
display screens. Note that if an application performs several tasks, then that
application may require several forms. The forms associated with the application
are maintained in a Forms Library.

Applications Programmer: The DSAC personnel responsible for designing and 0
developing an application. Although many individuals may be involved, the term
refers to the collective group.

Archival Forms Library: The central repository of all form definitions. They will
most likely be located at DSAC. This library includes previous versions of forms.

Box: A box is a fundamental structure in the Forms Management System. There are four •
box types: containing, text, entry, and menu.

Containing Box: The Forms Management System organizes the components of a form
into a hierarchy. Forms may contain a number of screens. Screens may contain a
number of components. In addition, components may be grouped. This is done
with a containing box. A containing box may also contain several screen
components and may be contained within other containing boxes. This containment
of boxes within other boxes describes a box hierarchy. In fact, the entire form is
defined in terms of a containing box for the entire form, which contains a
containing box for each screen, etc. The advantage of this approach is that logically
connected boxes may be grouped together.

5

UNCLASSIFIED

... . .: " . . .n ' :] -, :
" - -

" I........I..

%

UNCLASSIFIED

Data Verification: The Screen Manager provides a limited verification capability for I

entry box. An entry box may have a data type (numerical, monetary, alphabetic
(letters only), and free text). Thus, a letter entered into a numerical field would
cause an audible beep. The letter would not be entered into the form and the cursor
would not move. In addition, numerical and monetary fields may have an
associated range. Alphabetic and free text fields may have a mask. The mask I
provides a character by character validation of input. The significant mask
characters are:

space allows any character
'9 1 allows only digits
U' allows only upper case letters
1 ' allows only lower case lettersI

'a' allows any letters

other requires the specified digit
For example, a date field might have an associated mask of: "99/99/9999". The 9s 6
require digits and the slashes require slashes.

Entry Box: A component of a screen which associates a prompt field and an entry field.
The prompt field should tell the functional user what input is required. The entry
field is provided for the functional user to input data.

Form: A sequentially connected group of screens associated with a specific task.
Operationally, this means that the Screen Manager processes only one form at a
time. The applications program must invoke the Screen Manager explicitly for each
form in an application. The Screen Manager will display each screen associated
with the form in turn, retrieving user input for each response box within each
screen.

Form Invocation: Form invocation entails the display of all static text and the retrieval J
of any required user responses. Since forms may have many screens, this process
takes place one screen at a time. All static text (prompts, titles, etc.) are displayed.
Then for each response field (i.e., entry and menu boxes), the cursor is placed in
the response area, the user provides the response and presses the ENTER key, and
the cursor moves to the next response field. This repeats until the last response
field is processed. Then the next screen is processed until the entire form is
completed.

Form Load: Before the Screen Manager can be called to invoke a form, the form must be
loaded. This involves retrieving the static description of the form from the Forms
Library and the construction of the internal data structures describing the dynamic
behavior of the form. This includes allocating space for input, setting up default
values, etc.

Functional User: The ultimate end user of an application. The functional user is
assigned some task, such as processing a batch of order forms, that requires the
execution of an application.

6

UNCLASSIFIED

_51 -V :6F-- - ~ - -IF

UNCLASSIFIED

Help Box: Each box in a form may have an associated Help Box. The purpose of the ,S
help box is to provide guidance to the functional user on what is expected. A help
box might contain a sample entry for an entry box, or a more complete explanation
of the choices in a menu box. Help boxes are actually special purpose pop-up
boxes. They are invoked when the use presses a Help function key. When this
occurs, the help box associated with the current entry box (i.e., the box in which
the cursor is located) is invoked. If the current entry box does not have a help box,
then the entry box's containing box is searched for its help box. This continues up
the box hierarchy until a help box is found or until the top of the hierarchy.

Keyword: A keyword is used to help identify and retrieve Forms. For example, a form
for ordering shoes could have the associate key words: order, shoes, purchase.

Menu Box: A component of a screen which display a set of items from which the user
may make selections. This can be regarded as an alternative to the entry box where
the possible input is one (or a few) of a small set of possible values. Note that there
is no control information implicit within a menu box. Rather, control must be
imposed by the application program. That is, an application program invokes a
menu box via the Screen Manager. When the user makes a selection, control is
returned to the application program. Then the GET SELECTION function is called
to determine the user's choice. At that time, the applications program may make
control decisions based on the value of the menu choice. Also note that Entry and
Menu boxes may be freely mixed on a screen.

Operational Forms Library: The set of forms sent to an operational site. This library
contains only the most current form definitions and only those forms needed at a
given site.

Pop-up Box: The Forms Management System allows the definition of pop-up boxes. A
pop-up box may be associated with a given screen, but it is not displayed when the Arest of the screen is displayed. This is because a pop-up box, by its very nature,
pops-up, interrupting the normal flow of the screen, and disappears after its
purpose is completed. For example, help displays may be defined in pop-up
boxes. When a user presses a Help key, a display will pop-up explaining what is
expected.

Program Module: Within the Forms Management System, a program module (or
simply module) is an Ada package or subprogram.

Response Box: Either a menu box or an entry box. That is any box requiring a user
response.

Screen Designer: The DSAC personnel responsible for designing the forms and
recording those forms in the Archival Forms Library and for generating the
Operational Forms Library. The screen designer will probably also be the
applications programmer.

Screen: A set of boxes that are displayed simultaneously on the user's terminal. The
boxes may be of four types: Containing, Text, Entry, and Menu.

Screen Component: A screen component (or simply component) is the smallest
addressable unit in the Forms Management System. A component is a text box, an 0-N

7

UNCLASSIFIED

Nikki-

UNCLASSIFIED

entry box, or a menu box. Addressability refers to the fact that the screen manager p
can be used to invoke an individual box, a collection of boxes grouped within a
containing box, an entire screen, or an entire form composed of several screens.

Task: The functional users perform tasks requiring the use of applications programs and
the '-rocessing of forms. Examples of tasks are processing a batch of equipment
ordt.r forms, processing a message, and initiating a database query.

2.2 FORMS MANAGEMENT SYSTEM

There are five major program modules within FMS: Forms_Editor, Screen ..
Manager, ScreenController, ScreenPrinter, Forms-Library. The Forms Editor is a
stand-alone program for generating forms. In addition, the Forms Editor provides
mechanisms for searching the Forms Library and generating an operational library from the
archival library. Section 2.3 describes the conceptual structure that underlies the form
design and definition process. Table 1 lists the commands available in the Forms Editor
organized into command groups.

The Forms Librarian controls the database of form definitions. Form definitions
describe the appearance and required end user responses. Forms may require several
screens of display and input. The Forms Librarian adds new forms and extracts existing
forms under the control of the Forms Editor.

Table 1. Forms Editor Command Groups
Main Command Groups:

FILE • File handling commands
BOX • Box handling commands
DISPLAY • Display attribute commands
ENTRY • Entry box commands
MENU : Menu box commands

FILE handling commands:

NEW • Create a new form.
OPEN : Open an existing form.
SAVE : Save the form.
SAVE AS : Save the form under a new name.
PRINT • Print the form.
PRINT ALL • Print all forms in the library.
PURGE : Purge the forms library.
QUIT • Exit the Forms Editor.
LIST • List the forms in the library.

8

UNCLASSIFIED

-~ - -. - ~ .i -. . ~ ~: ,~%" %*

UNCLASSIFIED

Table 1. Forms Editor Command Groups (Continued) 0

BOX handling commands:

CREATE Create a box within the current containing box.
DELETE : Delete a box and any subordinate boxes.
REPOSITION Change a box's position on the screen.
RESIZE Change the box's size on the screen.
LIST BOXES : List and select boxes
HELP : Define a help box for the current box.

DISPLAY attribute commands:

FOREGROUND : Set the foreground attribute.
BACKGROUND "Set the background attribute. p,

BORDER • Set the bor&r visibility.
TEXT POSITION • Set the position of any text.
TEXT SIZE •Set the size of the text area.
TEXT CONTENT : Set the value of the text.

ENTRY box commands:

ENTRY FIELD POSITION : Set entry field screen position.
ENTRY FIELD SIZE : Set entry field buffer size.
ENTRY FIELD DEFAULT : Set a default value.
ENTRY FIELD ATTRIBUTE • Set a display attribute.
ENTRY FIELD TYPE : Set the data type.
ENTRY FIELD MASK • Set the mask for alpha data.
ENTRY FIELD RANGE : Set the range for numeric data.

MENU box commands:

ADD ITEM • Add an item to the menu.
DELETE iTEM • Delete an item from the menu.
SELECTION TYPE : Toggle exclusive vs. inclusive.
DEFAULT ITEM : Toggle item as selected or not.
AVAILABLE ITEM : Toggle item as available or not.
AVAILABLE ATTRIBUTE • Set available item display attribute.
UNAVAILABLE ATTRIBUTE : Set unavailable item display attribute.
SELECTED ATIRIBUTE • Set selected item display attribute.

The Screen Manager displays a specific sequence of boxes on the end user's

terminal and retrieves responses. These responses are buffered within the Screen Manager

and provided to the calling program on request.

9

UNCLASSIFIED

UNCLASSIFIED

The Screen Controller provides procedures for manipulating a display screen and

recording its content. These procedures include:

SAVEREGION
RESTORE REGION
SCROLL REGION
DRAW BORDER
RETURN_REGION

The Screen Primitives package provides a number of simple procedures conforming

to ANSI standard terminal control escape sequences. These include procedures for moving

the cursor clearing the screen, obtaining the cursor's position, etc.

Figure 1 is an overview of the FMS and the Application Interface.

FORMS MANAGEMENT SYSTEM
I/|APPLICATIONS I

FORMS PROGRAM
EDITOR SCREEN

- I MANAGER

FORMS DT

LIBRARIAN SCREEI L~CONTROLLE

ARCHIVAL PERATIONAL SCREEN
FORMS FORMS PRIMITIVES

LIBRARY LIBRARY
'I.I

Figure 1. Overview

2.3 CONCEPTUAL STRUCTURE
The following text expands on the major design concepts of the Forms Management

System. The major design concepts are:

The use of boxes as a screen organizational unit;

10

UNCLASSIFIED

JAL

UNCLASSIFIED

* The use of screen definitions to promote modularity; and,

The use of functions keys.

2.3.1 Boxes Et

The primary model for screen organization is the box. Boxes may be one of four
different types: Cor.taining, Text, Entry, or Menu. Containing Boxes, as the name implies,
contain other boxes. This is the method by which two or more boxes, e.g. a text box
providing instructions and a menu box, may be grouped together. Generally, a screen is
defined as one Containing Box and several subordinate boxes of various types. However,
Containing Boxes may contain other containing boxes. A box hierarchy is defined as a
Containing Box and all its subordinate boxes. Entry and Menu Boxes are collectively
referred to as input or response boxes.

All box types have a number of attributes which control their appearance on a screen.
The location of a box on a screen is relative to its containing box. Thus, the relocation of a
Containing Box will automatically relocate subordinate boxes. A box's border may be

visible or invisible. Boxes may have prescribed background and foreground display
attributes, such as reverse video or color, although display attributes are limited by the host
computer system and terminal display characteristics. Finally, boxes may have one of three
invocation actions. The invocation action specifies whether the screen is cleared before the
box is displayed, or whether the box overwrites the previous screen contents, or whether V l
the box "pops-up", thus preserving the previous screen contents. % %

A Text Box contains text, such as screen titles, that are to be displayed but require no

response from the end user of the application. All box types may contain text. The explicit
use of text boxes allows several messages to appear at different locations on the screen. ..,...

Entry Boxes specify a prompt/input pair. The screen designer may specify the

location, size and display mode of the prompt and the reply fields. The screen manager
system allows the end user to perform line editing of the input and can perform limited data 0
validation. The entry field may be restricted to numeric, monetary, or textual data.
Numeric and monetary fields may have a specified range and textual entry fields may have
an associated mask. More detailed validation and data conversions must be done by the

applications program.

UNCLASSIFIED

% .'. .

UNCLASSIFIED

Menu boxes provide a list of options that may be selected. At any one time,

some of the options may be available to the user, while others are unavailable. For

example, an application may have a menu for file manipulation. The menu may include

options for opening a file, saving a file, and printing a file. The applications developer may
wish to have all options visible when the box is displayed. However, when the application

is first started, only the open option may be available to the user, since the other two
options depend on an opened file. The menu box definition may include different display
modes for available, unavailable, and selected choices.

Furthermore, menu boxes may be exclusive, meaning that any choice
precludes any other available choice from that menu, or inclusive, meaning that several

choices may be valid at the same time.

2.3.2 The Screen Definition

The screen definition contains the definitions of one or more screens. As noted
previously, a screen is generally represented by a containing box with a number of
subordinate boxes. Each box definition includes its name and all information pertinent to
that box. Box names need only be unique within the context of the box's containing box.
Applications programs identify individual boxes by a "dot" notation. For example, if box
"A" is a containing box and box "B" is a menu box within "A", then the menu box is
accessed with the name sequence "A.B"

It should be noted that the screen definition represents a starting point for an
application. The Screen Manager provides procedures for making modifications to box

descriptions. These modifications include the default values of entry boxes, the available
items of menu boxes, as well as the menu items themselves.

2.3.3 Function Keys

This document makes references to a number of function keys for controlling
the definition and traversal of screens. This document is kept generic by naming the keys
according to their function. Specific implementations of the system will bind the function
keys to physical keys on the keyboard. For example, cursor movement functions would

12

UNCLASSIFIED

UNCLASSIFIED

most likely be bound to an IBM PC keyboard's arrow keys. The following is a list of

functions and a suggested binding on an IBM PC keyboard.

Funtin IBMPCBinding

NEXT FIELD TAB or ENTER
PREVIOUS FIELD shift-TAB
SELECT ENTER
END OPERATION END (unshifted 1)
CURSOR UP UP ARROW (unshifted 8) .

CURSOR-DOWN DOWN ARROW (unshifted 2) 0
CURSOR-LEFT LEFT ARROW (unshifted 4)
CURSORRIGHT RIGHT ARROW (unshifted 6)

The NEXT FIELD and PREVIOUS FIELD functions are used to traverse a

sequence of input boxes. The SELECT function is used to select a box in the SCREEN S

EDITOR system or select an item in a menu in the SCREEN MANAGER. The END

OPERATION function is used to terminate some operation such as relocating a box in the

SCREEN EDITOR. The cursor control functions are used to move the cursor on the

screen.

2.4 SCENARIO FOR APPLICATION PROGRAM INTERFACE

The following scenario illustrates how an applications programmer would use the

Screen Manager.

1. The Screen Manager must be "withed" into the body of the applications -

program.

2. The appropriate form must be loaded by a call to LOADFORM. This call will
cause the Screen Manager to access the Operational Forms Library (via the Forms Librarian

Package) and retrieve the description of the form.

3. The form is invoked by a call to INVOKEFORM that specifies the form name. "
Here, the Screen Manager takes control, displaying the screens defined in the form and

retrieving the functional users responses. When the form is completed, control is returned • .-.

to the applications program.

13

UNCLASSIFIED

UNCLASSIFIED

4. After the call to INVOKEFORM, the applications program issues a series of
calls to GETENTRY and GETSELECTION. These calls return the functional user's
responses to specified entry and menu boxes.

5. The applications program may then record the re-,onses in a transaction file, 4
access a database, or use the data for program control.

6. Then the form may be invoked again or another form may be invoked for a
different operation Figure 2 shows the flow of data in the FMS.

APPLCTION S.,.

RESPONS S

FFORM
IDI

USER

SCREEN
DESCRIPTIONS FORMS.,

LIBRARIAN

Figure 2. Data Flow

7. The applications programs supplies a Form Name (Form ID) to the Screen "
Manager which passes it on to the Forms Librarian.

8. The Forms Librarian returns a description of the form to the Screen Manager.

9. The Screen Manager uses this description to retrieve input from the Functional
User which is passed back to the Applications Program.

14

UNCLASSIFIED

1%d

h. * .k ' .

UNCLASSIFIED

Figure 3 shows the interaction of the principle procedures in the run time support
program modules of the FMS. The four major procedures of the Screen manager are
LOADFORM, GETENTRY, GETSELECTION, and INVOKEFORM. Although
other procedures exist in the Screen Manager, these four represent a minimum set for
effectively using the FMS. The LOADFORM retrieves a Form Description from the
FormsLibrarian via a call to GETFORM. INVOKEFORM manipulates the terminal's
screen via calls to the Screen Controller procedures. GET ENTRY and
GETSELECTION operate on data structures within the Screen Manager.

FORMS LIBRARIAN

SC EE IET ENTRY AWBRE
MANAGER IS R E -

MAM

IGET SELECTIONJ S C TRO .._ EN-

CNTROLLER
INVOKE RM RESTORE REGION

0 . Other procedures ISCROLLGE NREGIONI-."" ,." ,

Figure 3. Program Module Interaction •

15

UNCLASSIFIED

",A--.;r ;,7 -,f- -;,; , ,.3L, . b, . -,_ _ , , , B1,, ,. ~ ~-, A .. , , . B, -A

UNCLASSIFIED

3.0 DESIGN SPECIFICATIONS

3.1 FORMS MANAGEMENT SYSTEM Ile

This design of the Forms Management System (FMS) is specified in an Ada-like

program design language.

3.1.1 FORMSEDITOR
- --.. . .- - - - - - - -.

-- The FORMS EDITOR is a stand along program for designing --

-- and file forms. When the program is started, the --

-- form designer (i.e., the user) is given the option of --

-- starting a new form, editing an old form, printing a --

-- form description, or generating an operation forms --
-' library from the archival forms library.

-- The process of designing a form is largely menu driven. --

-- Extensive use is made of cursor control to define the --

-- size and shapes of screen components (boxes) and --

-- subcomponents (text, entry fields, etc.). --

with SCREEN MANAGER;
with FORMS LIBRARIAN;
with KEY VA.UES; -- maps function key values.
procedure FORMEDIT is

Package SM renames SCREEN MANAGER;
Package FL renames FORMS_LIBRARIAN;

-- A special menu handler is needed because of the use of a--5/-
-- horizontal menu, i.e., the top line of command groups. This
-- special handler will accept horizontal cursor keys and returns
-- the key value. The normal handler only accepts the vertical
-- cursor control keys and the select key. - -

procedure SPECIALMENUHANDLER(MENU_BOX NAME• in STRING;
RETURN_-CODE out CHARACTER)

is separate;

16

UNCLASSIFIED

M.

Noe

UNCLASSIFIED

-- NEXT COMMAND SET takes the current command set and the
-- horizonftal cursor control key and determines the next
-- command set. For example. if the current command set is
-- "FILE" and the CURSOR LEFT key were pressed, the current
-- command set would wrap around to the "MENU" command set.

procedure NEXTCOMMANDSET(CURRENTCOMMANDSET: in out STRING;
CURSORDIRECTION : in CHARACTER)
is separate;

-- PROCESS COMMAND is the procedure that actually performs the work.
-- Note that bo-th the command and its command set is given to the
-- procedure so that there is no confusion if the same command string
-- appears in more than one command set.

procedure PROCESSCOMMAND(COMMAND SET: in STRING;
COMMAND • in STRING)

is separate;

CURRENTCOMMANDSET: STRING[1..7];
CURRENTCOMMAND : STRING[I..301;
MENURETURNCODE : CHARACTER;

begin

-- First. ,nd the screens associated with the
-- For ditor program.

SM.LUAD rORM("FormsEditor");

-- Next, invoke the first screen (which merely clears the screen)

SM.INVOKEBOX("Forms_Editor.ClearScreen");

-- Now, setup the FILE command set as the current command
-- set. The current command is set to OPEN, although this
-- will be changed when the FILE command box is invoked. ,_.

CURRENT COMMAND SET "FILE";
CURRENT-COMMAND := "OPEN";.

-- Now, loop until the screen designer wishes to quit
-- Note that we are assuming the existence of pop-up box
-- definitions for "Forms Editor.FILE", "FormsEditor.DISPLAY",
-- etc.

17 %

UNCLASSIFIED

7

UNCLASSIFIED

loop A

SPECIAL MENU HANDLER("Forms Editor." &
CURRENT COMMAND SET,

MENURETURNCODE);

if MENU RETURNCODE = KEY VALUES.SELECT then
begin

CURRENTCOMMAND:= SM.GETENTRY("FormsEditor." &
CURRENT_COMMANDSET);

-- Note, we might want to verify before actually quitting

exit when CURRENT COMMAND = "QUIT';
PROCESSCOMMAND(CURRENTCOMMANDSET,
CURRENTCOMMAND);

end;

else
NEXTCOMMAND(CURRENTCOMMANDSET,
MENU RETURNCODE);

end loop;-

end FORM EDIT; -- The procedure

3.1.2 SCREEN MANAGER
package SCREENMANAGER is

--The SCREENMANAGER is the primary run-time interface into --

--the Forms Management System. Typically, the SCREEN_MANAGER is --

--used in the following sequence: --

-- 1. Load a form - LOAD FORM --

-- 2. Invoke a form - INVOKE FORM
-- 3. Retrieve end user responses - GETENTRY or GETSELECTION --

-- Variations of use:
-- * Steps 2 and 3 may be done iteratively for applications --
-- in which a batch of forms are being processed. --

-- * The application could take advantage of the data file --

-- capabilities of the SCREEN MANGER. In this case, Step 1 --
-- would also have to open a dta file (OPEN DATAFILE) --

-- and Step 3 would be changed to store the input data into --

-- the data file (STORE DATA).

18
U.S,

UNCLASSIFIED

UNCLASSIFIED ,

If the application provided data verification, then

-- additional steps could be provided to test the data, --

-- display error messages, and request corrected data. --

- - - - - - -- - - - - - - - - - - - - - - - - - - --- -

-- The LOAD FORM procedure retrieves the specified from from
-- the Forms Library. If the form does not exist, then the
-- exception UNKNOWNFORM is raised.

procedure LOADFORM(FORM NAME: in STRING);

-- The OPENDATA FILE procedure is used if the applications
-- program wishes the-SCREEN MANAGER to handle file buffering
-- of the input data. Details of how the information is stored
-- are described in the WRITEDATA procedure description.

procedure OPENDATAFILE(FILENAME: in STRING;
DATA FILE in out FILETYPE);

-- CLOSEDATAFILE is the companion procedure for OPENDATAFILE.

procedure CLOSEDATAFILE(DATAFILE: in out FILE_TYPE);

-- The INVOKEFORM procedure displays the static contents of
-- a form and retrieves the end user's responses. These responses
-- are buffered for subsequent retrieval by the application f-.

-- program via the GET ENTRY or GETSELECTION function or by
-- calling, STORE DATA. If a form is composed of more than one
-- screen, then each screen is invoked in turn.
-- INVOKE FORM raises an UNKNOWN FORM exception if the form has
-- not yet been loaded.

procedure INVOKE_FORM(FORM_NAME : in STRING);

-- The INVOKE BOX procedure is used to invoke parts of a form.
-- For example, INVOKEBOX could be used to display an error
-- message, or a special entry field not normally displayed
-- with the rest of the form, or the application program may
-- need to provide more interaction than simply displaying
-- a static form and retrieving the responses.
-- INVOKE BOX raises an UNKNOWNBOX exception if the box cannot
-- be found within the currently loaded form.

procedure INVOKE_ BOX(BOX NAME: in STRING);

-- The WRITE DATA procedure takes the current contents of the .,-,t4
-- form buffers and writes them to the currently opened data

19

UNCLASSIFIED 19 Vr r

UNCLASSIFIED

-- file. Each record is essentially a concatenation of all of the
-- user response fields in the form. Responses to menus are
-- represented by the string displayed for the selected menu
-- item. Individual entries are separated by a field separator
-- code (ASCU.FS or decimal 28). In addition, trailing spaces
-- are deleted.

procedure WRITEDATA(DATAFILE" in FILE_TYPE);

-- The READ DATA procedure provides a mechanism for retrieving
-- previously entered data. The returned VALUE is the contents of
-- the data record. That is, only the user responses are included
-- and each response is separated by a field separator code
-- (ASCII.FS or decimal 28). This string can be manipulated by
-- the application program or provided as an argument to the
-- DISPLAY DATA procedure to display the data on the user's
-- terminal.

procedure READDATA(DATAFILE in FILETYPE;
TRANSACTIONNUMBER: in NATURAL;
VALUE out STRING);

-- The DELETEDATA removes a transaction from the data file

procedure DELETEDATA(DATAFILE : in FILETYPE;
TRANSACTIONNUMBER: in NATURAL);

-- The DISPLAY DATA procedure takes a string (retrieved from a
-- data file by theREAD DATA procedure) and displays the string ,'
-- in a form on the user's-terminal. This is done by setting
-- the individual data fields as default values for each of the p
-- response fields and invoking the form. It should be noted
-- that there could be unexpected results if the applications
-- program changed the current form (by calling LOAD FORM)
-- after the original data was saved in the data file and before
-- the data is redisplayed on the screen. If possible,
-- DISPLAY DATA will detect any such changes and raise the
-- INAPPROPRIATE ACTION exception. (Note that such a change
-- would be undetectable if the number, types, and sizes of the
-- user response fields were the same in two different forms.)

procedure DISPLAYDATA(VALUE: in STRING);

-- The GETENTRY procedure is used to retrieve response values to
-- specific user response boxes. If the referenced box is an
-- entry box, then the returned value is the text entered by the
-- user (or its default value). If the referenced box is not an
-- entry box, then the exception INAPPROPRIATE ACTION is raised.

20

UNCLASSIFIED

UNCLASSIFIED

-- If the referenced box can not be found, then the UNKNOWNBOX S
-- exception is raised.

function GETENTRY(BOXNAME in STRING) return STRING;

-- The GET SELECTION procedure is used to retrieve the selected
-- choices from a menu. Since a menu may be inclusive (i.e., more
-- than one item may be selected), the return value is a pointer
-- to a chain of selected items. Each entry in the chain contains
-- a string representing a selected item and a pointer to the :-
-- next item in the string. This structure is defined in the
-- following data types: -

type MENULISTTYPE;

type MENULISTACCESSTYPE is access MENULISTTYPE;

type MENULISTTYPE is
record

ITEM NAME: STRING;
NEXT :MENULISTACCESSTYPE;

end record;

-- The GET SELECTION function returns the selected items from a
-- menu box. If the referenced box does not exist, then the
-- UNKNOWN BOX exception is raised. If the referenced box is not %.

-- a menu box, then the INAPPROPRIATEACTION exception is raised. -

function GETSELECTION(BOX NAME: in STRING)
return MENULISTACCESSTYPE;

-- It is customary to always display menus in a consistent
-- fashion. That is, all possible choices in a menu are
-- displayed whenever the menu is displayed. However, at any
-- given time, some choices may be inappropriate. For example,
-- an application that manipulates files may have. a menu that
-- contains choices for opening, closing, and printing a given
-- file. When the application is started, only the open choice
-- is appropriate. After a file is opened, close and print become
-- appropriate, but open is no longer appropriate. The
-- SCREEN MANAGER provides for this situation with the following
-- pair of procedures. If the referenced box cannot be found in
-- the current form, then the UNKNOWN BOX exception is raised. If -

-- the referenced box is not a menu box, of if the menu box cannot be found, then the
-- INAPPROPRIATE ACTION exception is raised. No errors are raised
-- if the procedures have no effect on the menu (e.g., calling
-- MAKE AVAILABLE and referencing an item that is already
-- available.

21

UNCLASSIFIED

_.'1
• -, .

UNCLASSIFIED

procedure MAKEAVAILABLE(MENUBOX NAME: in STRING;
MENUITEM : in STRING);

procedure MAKE_UNAVAILABLE(MENUBOXNAME: in STRING;
MENU_ITEM : in STRING);

-- Some applications may have to build menus at run time. That
-- is, the contents of a menu may depend on data that is only
-- available at run time. The following two procedures are used
-- to add and delete items to a menu. The exceptions UNKNOWNBOX
-- and INAPPROPRIATEACTION are raised for erroneous calls.

procedure ADD_ITEM(MENU_BOX_NAME : in STRING;
NEWITEM : in STRING);

procedure DELETEITEM(MENU BOX NAME. in STRING;
OLITEM : in STRING);

UNKNOWN FORM : exception;
UNKNOWN BOX : exception;
INAPPROPRIATEACTION : exception;

end SCREENMANAGER;

3.1.3 SCREENCONTROLLER

package SCREENCONTROLLER is

--The SCREENCONTROLLER package provides the following --

-- capabilities:

-- 1. Aggregate screen control functions such as drawing --

-- a box.

-- 2. An internal screen image that mimics the terminal --

-- display screen. -,
-- 3. Screen I/O procedures (e.g. GET and PUT) that --

-- duplicates screen TEXTIO while recording the --

-- activity on the internal screen image. --
-- 4. All SCREENPRIMITIVES actions which modify the --

-- the screen so that those changes can be recorded --

-- on the internal screen. --

-- The DRAW BOX procedure draws a box with a character deiined
-- in the DRAWBOX procedure body. The arguments describe the
-- upper left hand and lower right hand comer of the box.

22

UNCLASSIFIED

-. ~~N WI.9

UNCLASSIFIED

procedure DRAWBOX(TOP, LEFT, BOTTOM, RIGHT: in NATURAL);

-- The SAVE REGION and RESTORE REGION assist in the display of p.

-- pop-up boxes. SAVEREGION takes-the contents of a specified
-- region of the screen and saves it on a stack. RESTORE REGION
-- takes the region on the top of the stack and displays it on
-- the screen. The use of a stack allows the use of overlapping
-- pop-up boxes. Note that RESTOREREGION does not need arguments
-- since the region boundaries are stored with the region's
-- image on the stack.

procedure SAVE REGION(TOP, LEFT, BOTTOM, RIGHT: in NATURAL); .
procedure RESTOREREGION;

-- SCROLL REGION scrolls the contents of a specified region of
-- the screen. When the argument specifies scrolling up, the top %
-- line in the region is deleted, all other lines are moved up
-- one, the bottom line is cleared, and the cursor is placed in
-- the bottom left hand comer of the region. The action is
-- similar when scrolling down, except that the lines are moved
-- down and the cursor is placed in the top left hand corner.

procedure SCROLLREGION(TOP, LEFT, BOTTOM, RIGHT: in NATURAL;
DIRECTION : in (UP, DOWN) := UP);

-- The following procedures mimic the SCREEN PRIMITIVES
-- procedures except that they record any screen modifications on
-- the internal screen image before calling SCREENPRIMITIVES.

procedure HOME CURSOR;
procedure MOVECURSORTO(ROW, COLUMN: in NATURAL);
procedure MOVEFCURSOR UP (COUNT: in NATURAL := 1);
procedure MOVE-CURSOR-DOWN (COUNT: in NATURAL := 1);
procedure MOVE-CURSOR -RIGHT (COUNT: in NATURAL := 1);
procedure MOVE-CURSOR-LEFT (COUNT: in NATURAL := 1);
procedure CLEAR SCREEN; I.e
procedure ERASE END OF LINE;

-- The following procedures mimic TEXT 10 procedures for writing
-- to and reading from the user's terminal. 'hey are provided
-- here because any such actions must be reflected in the
-- internal screen representation.

procedure GET (ITEM : out CHARACTER);
procedure GET (ITEM: out STRING);

23

UNCLASSIFIED

-.. '

UNCLASSIFIED

procedure PUT (ITEM: in CHARACTER);

procedure PUT (ITEM : out STRING);

end SCREENCONTROLLER;

3.1.4 SCREENPRIMITIVES
package SCREEN._PRIMrIVES is

-- This package provides ANSI primitive screen control routines --

-- for cursor movement, position reporting, screen clearing, --

-- etc. Although the procedures conform to ANSI escape --
-- sequences, non-ANSI terminals may be used by providing --
-- whatever control strings are necessary. --

-- HOME_CURSOR moves the cursor to the top left corner of the
-- screen.
procedure HOMECURSOR;

-- MOVECURSORTO places the cursor in a specified row and column
-- position.
procedure MOVECURSORTO(ROW, COLUMN: in NATURAL);

-- MOVECURSOR xx moves the cursor a specified number or lines
-- (rows) in the indicated direction.
-- The default for all relative cursor movement procedures is 1
-- unit.

procedure MOVE CURSOR UP (COUNT: in NATURAL:= 1);
procedure MOVECURSORDOWN (COUNT: in NATURAL := 1);
procedure MOVE-CURSOR-RIGHT (COUNT: in NATURAL := 1);
procedure MOVE-CURSOR-LEFT (COUNT: in NATURAL := 1);

-- REPORT CURSOR POSITION returns the current cursor location ,"'
procedure REPORT_CURSORPOSITION(ROW, COLUMN : out NATURAL);

-- CLEAR SCREEN clears the entire contents of the screen and
-- places the cursor in the top left corner of the terminal.
procedure CLEARSCREEN;

-- ERASE END OF LINE erases all text from the current cursor
-- position to the right hand side of the screen.
procedure ERASEENDOFLINE;

24

UNCLASSIFIED

NsI

V W~~ *. /..w 1 1 %j~ -• .

'S.

UNCLASSIFIED "

-- SQUAK makes an audible signal from the terminal.
procedure SQUAK;
end SCREENPRIMITIVES;

3.1.5 FORMSLIBRARIAN

with FORM DATA STRUCTURE;
FDS renames FORMDATASTRUCTURE;

package FORMSLIBRARIAN is

-- The FORMSLIBRARIAN is responsible for maintaining the --
-- Forms Library. Operations on the library are: --

-- STORE FORM - Store a form in the library --
-- GET FORM - Get the most recent version -- S
-- DELETE FORM - Delete the most recent version --
-- GET FORMS LIST - Get a list of current form names --
-- PURGE FORM - Delete all but most recent version --
-- ADD I-EYWORD - Add a keyword to a form --
-- DELETE-_KEYWORD - Remove a keyword from a form --

-- The Forms Library is actually a database in which forms --
-- are the data objects. Each form has a unique identifier (Form ID). --
-- In addition, each form has a set of keywords that may be --
-- used to identify a form. --

-- The Forms Library is maintained in a file whose name is --

-- fixed in the body of the FORMSLIBRARIAN. --

-- The FORMS NAME LIST data structure is used to form a linked
-- list of form names. Each item in the name list is a structure S
-- containing the form name and a link to a list of key words.

type KEYWORDITEM;

type KEYWORDITEMACCESSTYPE is access KEYWORDITEM;

type KEYWORDITEM is -"''S-
record

KEYWORD: STRING;
NEXT • KEYWORDITEMACCESSTYPE;

end record;

25 ,

UNCLASSIFIED

7w"t

UNCLASSIFIED

type FORMSITEM;

type FORMSITEMACCESSTYPE is access FORMSITEM;

type FORMS ITEM is AI
record

FORM NAME : STRING;
KEYWORD LIST: KEYWORD ITEM ACCESS TYPE;
NEXT FORMS_ ITE1MACCES S_TYPE;

end record;

-- The STORE FORM procedure takes a form data structure and
-- stores the foim in the library. It is possible for two forms
-- to have the same name. In this case, the older form (i.e., the
-- form already in the library) is assumed to be a previous
-- version. Previous versions are maintained until a PURGE
-- operation is performed.

procedure STOREFORM(FORMNAME: in STRING;
FORMSTRUCTURE: in FDS.FORMACCESSTYPE);

-- The GET FORM procedure retrieves a specified form from the
-- library. If the form is not found, then the exception
-- UNKNOWNFORM is raised.
procedure GETFORM(FORMNAME : in STRING;

FORM STRUCTURE: out FDS.FORM ACCESS TYPE);

-- The DELETE FORM procedure removes the most recent version of
-- a specified form from the library. If the form does not exist,
-- the exception UNKNOWN FORM is raised. If more than one form
-- existed before the delete procedure is called, the second most
-- recent form becomes the current version. I

procedure DELETEFORM(FORMNAME: in STRING);

-- The GET FORMSLIST procedure search is for all forms with
-- keywords-matching the (optional) list given in the argument
-- of the procedure.

procedure GETFORMS LIST(FORM NAMES: out FORMS ITEM ACCESS TYPE;
KEYWORDS: in KEYWORIDITEMACCESSTYPE

null);

-- The PURGE FORM procedure is used to remove all previous ,
-- versions of a-form. If only one version of a form resides
-- in the library, no action is taken. If no forms of the

26

UNCLASSIFIED

,,.x.v.. .,',,',,:,,':..,' . : ' ; ' '.,:.. % . . :..'.'.,, .,'.'.;-7.,', '.:::.'."'. . '.','.*-'.'- '.I % I

,f , J ._t. J . .. , . Z. ,J IS, - . B, ll~l
-- . J -'

,l ,l,' l. bgllJt l, l " . -'

• • .

UNCLASSIFIED

*%

-- given name reside in the library, the exception 0
-- UNKNOWNFORM is raised.

procedure PURGEFORM(FORMNAME: in STRING);

-- The ADD KEYWORD and DELETE KEYWORD procedures are used to
-- modify the keywords associated with a form. Only the most

recent version of a form is affected. If the form cannot
-- be found, then the exception UNKNOWN FORM is raised. If
-- an add operation is performed on a form that already has
-- the indicated keyword, or a delete operation is perform
-- on a form that does not have the indicated keyword, no
-- action is taken. 0

procedure ADDKEYWORD(FORM NAME: in STRING;
KEYWORD : in STRING);

procedure DELETEKEYWORD(FORMNAME : in STRING;
KEYWORD : in STRING); 0

UNKNOWN_FORM: exception;

end FORMS_LIBRARIAN;

3.2 TYPICAL APPLICATION PROGRAM EXAMPLE

The following is a skeleton program for an applications program using the Screen
Manager package.

with SCREEN MANAGER;
procedure APS1 is
SM renames SCREENMANAGER;

EMPLOYEENAME is STRING[1.. 26];
* EMPLOYEE_-AGE is NATURAL;

begin
SM.LOAD FORM(" B5006G"); -- setup so ,e arbitrary form

loop

--
--Any changes to the form would go here. Possible changes would be changing default --
--values, enabling or disabling menu items, etc.

--

27

UNCLASSIFIED

-: IT 7 77 V 77

UNCLASSIFIED

SM.INVOKEFORM("B5006G); -- Screen Manager takes control
-and retrieves user input

--Now we have to retrieve the information from the screen manager. Note that we need -

--to convert AGE from string.

EMPLOYEENAME SM.GET_-ENTRY("B5006G.SCRN1.NAME");
EMPLOYEEAGE STRINGTONUMBER(

SM.GETENTRY("B5006G.SCRN1 .AGE"));

put (EMPLOYEE NAME); '

put ine (EMPLOYEE_AGE);
end loop

-Now we can do whatever with the the name and ag-- values. -

end.

t,

28'

UNCLASS!FI.

0

UNCLASSIFIED
p.

'U.. ~e-.
S
-U.

-U'

4 0

U,
A-.

* 0
-a-

'U-.'..

*
-U

-UU.,

-J

"U
U..

'U'.

4 0

~
U-- 'UU

*
9U.~

f*~UU
A'-..

* S
29

UNCLASSIFIED

q S

% at V U. -

UNCLASSIFIED

IN?

APPENDIX A
*t

ALLOCATION OF REQUIREMENTS TO DESIGN

.f%

zv

tSk

A-1

UNCLASSIFIED

UNCLASSIFIED

A-2

UNCLASIFIE

UNCLASSIFIED

The following text discusses the system requirement and how each requirement is fulfilled
in the design.

High Level Requirements

The system must be a set of Ada packages that are compilable into an Ada
program library.

- The design assumes the Ada programming language as the implementation language. .
The Program Design Language (PDL) will use Ada constructs to describe the program
designs. A

The system must be usable for Ada demonstration projects and adaptable to
a prototype Ada application;

- The Forms Management System provides a well-defined solution to an existing need of V
DSAC. The scope of the system is sufficient to demonstrate most of the capabilities of
the Ada programming language (with the possible exception of tasking). The system is
sufficiently complex so as to provide an interesting demonstration.

The system must provide functions to create, delete, and modify menu-type
screens. .

- Creation, deletion, and modification facilities are provided in the Forms Editor. The
Screen Manager is a run-time support package that is used to manipulate the forms.
Menus are a type of user response box that is supported by all program modules in the
Forms Management System.

The system must provide functions to invoke menu-type screen from
applications.

- This requirement is satisfied by the Screen Manager.

The system must provide functions to create, delete, and modify form-type
screens.

- The Forms Editor provides facilities to create, delete, and modify forms. The Screen
Manager provides facilities for manipulating data entry forms.

The system must provide functions to gather data input from form-type
screens and to pass this data, through a defined interface, to application
programs written in Ada or in COBOL.

- The requirement is satisfied by the Screen Manager. The Screen Manager includes a
callable procedure for writing the variable content of a screen (i.e. the data entered by

A-3

UNCLASSIFIED

Z~ ~P*

UNCLASSIFIED

the functional user) to a data file. The data is organized as one form per record with 1
individual data fields separated by a field separator character (ASCII.FS).

The system must perform a limited but critical amount of input data
verification. This verification must be performed with the same rigor for
all terminal types (i.e., application programs must be assured of the same
verification, or lack or it, without knowing the terminal type in use). b

This requirement is satisfied in the form description and the Screen Manager.
Specifically, the form description includes a type for data entry boxes (e.g., numeric,
monetary, alphanumeric) and either a range for numeric fields or a mask for alphabetic
fields. The Screen Manager compares end user input to the entry field. Although the
specific mechanism by which verification will be done will depend on the terminal type
(esp. the 3270), the mechanism will be transparent to the application program. This
may result in minor differences in behavior for the functional user depending on the
terminal type. Specifically, 3270 type terminals may have to delay verification until an
entire field is completed, while other terminals could allow character by character
verification.

The system must be time-efficient such that the functional user sees no
degradation of performance from the currently available menu programs.

- With two exceptions, all modules have an execution complexity of O(n). The
exceptions are the retrieval of specific forms in the forms library and access of specific
boxes in a forms definition. The forms library is indexed, thus minimizing the time S
needed to search for a specific form. The screen manager keeps a specific form
definition in a tree structure, thus reducing the time needed to access a specific
component. The anticipated complexity of specific forms should not noticeably effect
execution speed.

The system must be designed so that all or portions of it can be developed 3
by the programmers of DSAC to demonstrate their skills in software
engineering and the Ada language.

- This requirement is partially satisfied by the design approach, and a specification that
can be refined by DSAC. (Note: The low level terminal control packages will require
specialized skill/knowledge).

_0

A-4

UNCLASSIFIED

UNCLASSIFIED

Lower Level Requirements

Forms must be designed in an interactive mode.

- This requirement is satisfied by the Forms Editor.

The form design process must be menu driven.

- This requirement is satisfied by the Forms Editor.

The screen designer must:
* be provided a mechanism for specifying data type, values, and/or range of values

that can be entered on the form. 0
" be able to position text, data field, and error messages in any space dimensions

supported by the terminal device on which the form will be used.
" be able to design forms for fixed and variable length data fields.
" be able to re-use portions of other forms.

This requirement is satisfied by the Forms Editor. Data types, values, and ranges are
attributes of entry boxes that are explicitly modifiable by the screen designer. The
position of various screen components are also explicitly modifiable. Currently, the
design fixes the maximum length of entries to the size of the entry field. However, the
entry field could be arbitrarily large, up to the size of the terminal's display screen. If
this is not sufficient, then the current design can easily be modified to include a flag in
the entry box description to indication a fixed or variable length entry. However, even
variable length entries must have an indication of maximum size.

A sample form (master) must be capable of being displayed at the same
time that a data entry form is being displayed.

- The screen design may include text boxes displaying sample inputs next to data entry •
boxes. In addition, the screen designer can associate help screens with each entry box
on a form. The help box could contain sample input when the functional user presses
the HELP function key.

The data entered on the form must be saved as on ASCII transaction ile.

- This requirement is satisfied by the data file capabilities of the Screen Manager.

Transaction files generated by data entry must be usable by COBOL
programs.

- It is assumed that COBOL programs can read ASCII files. In addition, the Forms 5
Editor can generate a field by field description of the data file generated by the Forms
Processor. The syntax of this description has not yet been decided, but options include
plain text and Ada data type statements.

A-5 S

UNCLASSIFIED

UNCLASSIFIED

Forms must be designed for fixed and variable length data fields. i.

- (see above)

The database of forms must be indexed by application and by type.

- This requirement is satisfied by the Forms Librarian. -i

The database of forms must be linked with data validation programs (when
they exist). p,

- This requirement is satisfied by the Forms Librarian. Each form will include a
(possibly null) entry naming the data validation program(s). Note that this is not a
direct link in that automatic invocation of data validation programs is not provided.

The database of forms must be linked with appropriate run-time libraries
for the terminal devices and the computer systems in use.

- Note that maintaining the forms data base is an independent function from terminal
device support. There will be terminal support for a variety of terminal types. This
will take the form of families of packages that are designed for specific terminal types. 4_
In most cases, the only dependent package is the Screen Primitives package.
However, the 3270 terminals may require more extensive terminal dependent code. In
any case, terminal device controls are independent to the form definitions.

The form designer must be able to edit forms in the database and maintain
version control.

- The Forms Editor interacts with the Forms Librarian. The Forms Librarian provides
version control.

The screen/menu designer must be able to provide default values for all
user responses.

- The form description includes default values for all components. The Forms Editor
provides access to these fields.

j

The applications programmer must be able to directly control the
sequencing of screens.

- Invoking a containing box results in a sequencing according to how subordinate boxes
are located in the box hierarchy. However, the applications programmer may also
invoke specific user response boxes directly, and thus maintain explicit control of the
order of invocation. Note that 3270 terminals may require a different mechanism.

.1*

A-6

UNCLASSIFIED
,,'

'I

p--

UNCLASSIFIED

The applications programmer must be able to specify menus that are
inclusive or exclusive. ,

- The menu box descriptions include a flag indicating selection type. The screen manager
uses the flag to control the action taken when a menu item is selected. Specifically, the
selection of an item in an exclusive box causes the deselection of any other item. The
selection of an item in an inclusive box does not deselect other items.

Functional User

Must be able to edit within datafields being created, but must not be able to

change the pre-defined portions of the form.

A functional user must be able to control traversal of the screen.

- The screen manager provides function keys for NEXT FIELD and PREVIOUS FIELD.
(Note that these keys are defeatud if the applications program controls box invocation
directly.)

A functional user must be provided a menu that includes prompts and help
information that is pertinent to his/her form(s) of interest.

Each box in a form includes a (possibly null) reference to a help box. The help box is
actually a pop-up text box that is invoked when the functional user presses the HELP 0
function key. When this occurs, the help box associated with the current entry box
(i.e., the box in which the cursor is located), is invoked. If the current box does not
have a help box, then the help box of the current box's parent is searched. This
continues until a help box is found or the top of the hierarchy is found. V.

A functional user must be able to recall, display and/or print any single
form or all forms completed during a session.--.

- The Screen Manager includes several procedures for manipulating a data file, including
a procedure for reading an arbitrary transaction.

A functional user must be warned with an audible sound or visible signal
when he/she has exceeded the space allowed for a pre-defined data field
and when the transaction space has been completed (when a form is filled)
and a user action is required.

- The Screen Manager precludes the user from exceeding an entry field by either directly
controlling the cursor (on ANSI terminals) or instructing the 3270 on the location of the 0
modifiable and restricted fields.

~..-:,

A-7

UNCLASSIFIED

- - .,'

UNCLASSIFIED

Keystrokes will be minimized for invoking menus or forms, for data entry, ,

and for editing.

- This is a general requirement that is satisfied by all interactive modules in the system.

Uniform menus must be displayed with illogical choices precluded.

- This requirement is satisfied with the form definition and the Screen Manager.
Specifically, menu items may have one of several modes. The unavailable mode means
that the item cannot be chosen and is skipped over when the end user traverses the
menu with the cursor control keys. If an item is available, then it may be "current" if
the cursor is positioned on that item. Also, if an item is available, it may be "selected."
It is still the responsibility of the applications program (i.e., the program that calls the
Screen Manager) to determine which items are available and notify the Screen Manager.

The cursor will be restricted to valid fields for data entry and menu
selection

- The requirement is satisfied with the Screen Manager (see above).

Technical Environment

The Forms Management System must be designed to operate on VT-100 and
IBM 3270 and IBM-PC work stations.

This requirement is satisfied with the Screen Manager, Screen Controller, and Screen
Primitives packages. Both the VT-100 and IBM-PC work stations respond to ANSI
standard escape sequences. The inclusion of 3270 terminals brings up a number of (as
yet) unanswered questions. Specifically, the 3270 is programmed with respect to
prompt and entry fields. Data is not transferred to the host computer until the end user
presses the ENTER key. This precludes the character by character validation possible
on the other terminal type (e.g., for character field masking). It is not yet clear whether
the 3270 can be programmed to work with menus in a manner consistent with the
design of the Forms Management System. (At this stage, it seems desirable to provide
as much functionality as possible. This may result in different terminals behaving
differently, however, this is not unreasonable so long as it is understood that such
differences are minor and are a result of limitations in terminal capabilities.)

Dependencies on operating system facilities will be isolated in modules that
are part of the run-time library for the application program.

- Operating System dependent code is isolated. However, there is little operating system
requirements. Opening and closing files are standard Ada procedure calls.

.

A-8

UNCLASSIFIED

-I

UNCLASSIFIED

The Forms Management System must be capable of exploiting a color
monitor.

- This requirement is satisfied by the Screen Manager. See the discussion on methods of
accommodating various terminal types. (Note that the inclusion of this requirement
means that monochrome terminals will behave differently than color terminals.)

Modifications to screen appearance should not require a change to the Z
application program that uses that screen.

- The requirement is satisfied by the use of a form description. The Screen Manager
reads display attributes from the Forms Library. Any changes to display attributes
require no changes to an applications program. Furthermore, the Screen Manager
provides functions for requesting information on the structure of a form. Thus, it is
possible for an applications program to be designed such that it can adapt to any
structure without modification.

4 0

SA-9

UNCLASSIFIED

.P"

Distribution List for IDA Memorandum Report M-366

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Ms. Sally Barnes 10 copies
DLA-ZWS
HQ Defense Logistics Agency
Cameron Station
Alexandria, VA 22304-6100

Other

Defense Technical Information Center 2 copies
Cameron Station
Alexandria, VA 22314

liT Research Institute 1 copy
4550 Forbes Blvd., Suite 300
Lanham, MD 20706

CSED Review Panel

Dr. Dan Alpert, Director 1 copy .
Center for Advanced Study
University of Illinois
912 W. Illinois Street
Urbana, Illinois 61801

.3..
Dr. Barry W. Boehm 1 copy
TRW Defense Systems Group
MS 2-2304
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis 1 copy
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr Larry E. Druffel 1 copy
Software Engineering Institute
Shadyside Place
480 South Aiken Av.
Pittsburgh, PA 15231

".I

'..

NAME AND ADDRESS NUMBER OF COPIES

Dr. C.E. Hutchinson, Dean 1 copy "

Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano 1 copy
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto 1 copy
Mainstay
302 Mill St. 2
Occoquan, VA 22125 -"

Mr. Oliver Selfridge 1 copy I
45 Percy Road
Lexington, MA 02173

IDA

General W.Y. Smith, HQ 1 copy I;
Mr. Seymour Deitchman, HQ 1 copy
Mr. Philip Major, HQ I copy
Dr. Jack Kramer, CSED 1 copy
Dr. Robert I. Winner, CSED 1 copy
Dr. John Salasin, CSED 1 copy
Dr. David J. Carney, CSED 2 copies
Ms. Audrey A. Hook, CSED 2 copies
Ms. Katydean Price, CSED 2 copies
IDA Control & Distribution Vault 3 copies

.5-

